Package: geospt 1.0-4

Ali Santacruz

geospt: Geostatistical Analysis and Design of Optimal Spatial Sampling Networks

Estimation of the variogram through trimmed mean, radial basis functions (optimization, prediction and cross-validation), summary statistics from cross-validation, pocket plot, and design of optimal sampling networks through sequential and simultaneous points methods.

Authors:Carlos Melo <[email protected]>, Ali Santacruz, Oscar Melo <[email protected]>

geospt_1.0-4.tar.gz
geospt_1.0-4.zip(r-4.5)geospt_1.0-4.zip(r-4.4)geospt_1.0-4.zip(r-4.3)
geospt_1.0-4.tgz(r-4.4-any)geospt_1.0-4.tgz(r-4.3-any)
geospt_1.0-4.tar.gz(r-4.5-noble)geospt_1.0-4.tar.gz(r-4.4-noble)
geospt_1.0-4.tgz(r-4.4-emscripten)geospt_1.0-4.tgz(r-4.3-emscripten)
geospt.pdf |geospt.html
geospt/json (API)

# Install 'geospt' in R:
install.packages('geospt', repos = c('https://amsantac.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/amsantac/geospt/issues

Datasets:
  • COSha10 - Soil organic carbon database at a sampling depth of 0-10 cm
  • COSha10map - Map of total soil carbon stock (t/ha) at 0-10 cm depth
  • COSha30 - Soil organic carbon database at a sampling depth of 0-30 cm
  • COSha30map - Map of total soil carbon stock (t/ha) at 0-30 cm depth
  • ariari - Ariari Map.
  • ariprec - Data from climatic stations of the Ariari River
  • lalib - Map of boundary enclosing La Libertad Research Center
  • preci - Empirical data related to rainfall

On CRAN:

4.56 score 4 stars 1 packages 30 scripts 321 downloads 1 mentions 19 exports 39 dependencies

Last updated 9 months agofrom:61758ff1d2. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 16 2024
R-4.5-winNOTENov 16 2024
R-4.5-linuxNOTENov 16 2024
R-4.4-winNOTENov 16 2024
R-4.4-macNOTENov 16 2024
R-4.3-winNOTENov 16 2024
R-4.3-macNOTENov 16 2024

Exports:bestnetbp.with.outlier.labelcriteria.cvcriterio.cvest.variogramsextractFormulagraph.idwgraph.rbfidw.cvnetwork.designpocket.plotrbfrbf.cvrbf.cv1RBF.phirbf.tcvsamplePtsseqPtsOptNetsimPtsOptNet

Dependencies:abindclassclassIntDBIdotCall64e1071fieldsFNNgenalggslgstatintervalsKernSmoothlatticelimSolvelpSolvemagrittrmapsMASSminqaplyrproxyquadprogRcpprlangs2sfsftimesgeostatspspacetimespamstarsTeachingDemosunitsviridisLitewkxtszoo

Readme and manuals

Help Manual

Help pageTopics
Geostatistical Analysis and Design of Optimal Spatial Sampling Networksgeospt-package geospt
Ariari Map.ariari
Data from climatic stations of the Ariari River (Meta-Colombia Department)ariprec
Generate a SpatialPoints object corresponding to the best result obtained in an optimized networkbestnet
geospt internal functionbp.with.outlier.label
Soil organic carbon database at a sampling depth of 0-10 cmCOSha10
Map of total soil carbon stock (t/ha) at 0-10 cm depthCOSha10map
Soil organic carbon database at a sampling depth of 0-30 cmCOSha30
Map of total soil carbon stock (t/ha) at 0-30 cm depthCOSha30map
Cross-validation summariescriteria.cv
Cross-validation summariescriterio.cv
Variogram Estimatorest.variograms
geospt internal functionextractFormula
Graph that describes the behavior of the optimized _p_ smoothing parameter.graph.idw
Graph that describes the behavior of the optimized _eta_ and _rho_ parameters, associated with a radial basis functiongraph.rbf
idw cross validation leave-one-outidw.cv
Map of boundary enclosing La Libertad Research Centerlalib
Generating 'AKSE' associated with a conditioned network designnetwork.design
graphs the probability or standardized variance in the directions north-south or east-westpocket.plot
Empirical data related to rainfallpreci
gaussian, exponential, trigonometric, thin plate spline, inverse multiquadratic, and multiquadratic radial basis function predictionrbf
rbf cross validation leave-one-outrbf.cv
Generates a RMSPE value, result of cross validation leave-one-outrbf.cv1
radial basis function evaluationRBF.phi
table of rbf cross validation, leave-one-outrbf.tcv
sample _n_ point locations in (or on) a spatial objectsamplePts
Design of optimal sampling networks through the sequential points methodseqPtsOptNet
Design of optimal sampling networks through the simultaneous points methodsimPtsOptNet